A first checklist and diversity of ants (Hymenoptera: Formicidae) of the saline dry lake Chott El Hodna in Algeria, a Ramsar Conservation Wetland

G. Barech1,2*, M. Khaldi1,2, S. Ziane1, A. Zedam1, S. Doumandji2, M. Sharaf3 & X. Espadaler4

1Département d’Agronomie, Faculté des Sciences, Université Mohamed Boudiaf de M’sila, 28000, Algeria
2Département de Zoologie Agricole et Forestière, Ecole Nationale Supérieure Agronomique (ENSA), El-Harrach, Alger, 16200, Algeria
3Plant Protection Department, College of Food Sciences and Agriculture, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
4Ecology Unit and CCREAF, Autonomous University of Barcelona, Bellaterra 08193, Spain

In the first study of its kind, ants (Hymenoptera: Formicidae) were sampled near a unique natural environment, a large saline lake, Chott El Hodna, a Ramsar Conservation Wetland in eastern Algeria. The species of ants were determined at two sites, Medbah and Birkraa in spring (March–April) 2011 using pitfall trapping and hand collecting. We provide a checklist and some observations on 24 species belonging to 14 genera and four subfamilies (Dolichoderinae, Dorylinae, Formicinae and Myrmicinae). To evaluate the ant diversity, we used data from pitfall traps for calculating ecological indexes.

Key words: Formicidae, Algeria, chott, checklist, diversity.

INTRODUCTION

The natural landscapes of Algeria include a diversity of wetlands which are important staging habitats and wintering grounds for migrating Palearctic birds (Samraoui & Samraoui 2008). Chott El Hodna is one of a series of wetland complexes composed of vast and shallow dry saline lakes often seasonally wet, that occur in the semi-arid Algerian Hauts Plateaux located between the Saharan Atlas and the northern narrow coastal plains (Boulkhssaïm et al. 2013). These wetlands are ranked among the best wintering sites in Algeria for water birds in Algeria. Created by waters draining from the Atlas Tellien to the north and the Saharan Atlas to the south, the chotts are typified by having a landscape of vegetated Maghreb steppe with seasonal brackish and saline lakes, pools, marshes, and freshwater springs (Ramsar 2011).

Chott El Hodna is supplied by at least 22 main streams and freshwater springs and is covered with water only in winter. In summer it is dry and salty, with a salt crust covering the whole area (Ladgham-Chicouche & Zerguine 2001). The rare ecosystem is of great interest to ecologists and is a site where post-breeding birds congregate (Samraoui & Samraoui 2008; Boulkhssaïm et al. 2013). The fauna of Chott El Hodna is rich and diverse but, in contrast to the flora, little is known due to a lack of specific studies, especially of the arthropods, among them the myrmecofauna (Ladgham-Chicouche & Zerguine 2001).

There are a few studies of the ants of dry saline lake areas (chott) of North Africa, notably from Tunisia, particularly Chott El Jerid and Maharès, but those primarily report visual navigation behaviours, such as the mechanisms of navigation, orientation and distance estimation of the desert ants Cataglyphis fortis (Forel, 1902) and Cataglyphis bicolor (Roger, 1859) (Müller & Wehner 1994; Horváth & Wehner 1999; Meyer & Domanico 1999; Wolf & Wehner 2000; Wohlgemuth et al. 2002; Dillier & Wehner 2004; Cheng et al. 2006). Those studies, however, have not provided a checklist of ant species. Most studies of ant occurrence and distribution in Algeria are historical and mainly concern the taxa of the Sahara and forest ecosystems (e.g. Forel 1890, 1894; Lameere 1902; Sitz 1917; Santschi 1924, 1934; Bernard 1953, 1960; Délye 1968; Cagniant 1973). Barech et al. (2011), Barech (2014) and Barech et al. (2015) have added more information about ants from Algeria. Here we provide the first investigation of the myrmecological fauna of a saline lake area, Chott El Hodna.
MATERIAL AND METHODS

Study area

The Chott El Hodna is a dry saline lake in eastern Algeria (35°18' to 35°32'N and 04°15' to 05°06'E) with an area of about 362 000 ha, and set at 392 m mean altitude. The local climate is classified as arid with a cold winter. Precipitation is variable, with a mean of 128.9 mm and ranging between 150 and 200 mm/year. Annual mean temperatures are 20.6 °C (minima: -0.6 °C to 6.2 °C; maxima: 33.0 °C to 37.9 °C). Drought can last 11 to 12 months. The soil has a sandy texture, medium salinity, and contains little organic matter. Salt crusts usually cover the soil surface. At this site, the vegetation coverage is approximately 20%. Plant communities are primarily composed of 10 plant families: Asteraceae (Atractylis flava Desf.), Chenopodiaceae (Atriplex halimus L. and Halocnemum strobilaceum (Pall.) M.B.), Brassicaceae (Ammosperma sp.), Poaceae (Oropetium africanum Coss. & Dur.) Chiov. and Aeluropus littoralis (Gouan) Parl.), Geraniaceae (Erodium sp.), Plantaginaceae (Plantago albicans L.), Plumbaginaceae (Limonium pruinosemum (L.) Chaz., Suaeda fructicosa (L.) Forrsk and Frankenia thymifolia Desf. (Kaahebe 1995). Two sites (Medbah and Birkraa) were chosen close to the saline lake, both situated in the southern part of the Chott. Medbah is located 75 km from the centre of M’Sila (35°21’09”N 4°33’45”E) (Fig. 1). The soil has a sandy texture, medium salinity, and contains little organic matter. Salt crusts usually cover the soil surface. At this site, the vegetation coverage is approximately 20%. Plant communities are primarily composed of 10 plant families: Asteraceae (Atractylis flava Desf.), Chenopodiaceae (Atriplex halimus L. and Halocnemum strobilaceum (Pall.) M.B.), Brassicaceae (Ammosperma sp.), Poaceae (Oropetium africanum Coss. & Dur.) Chiov. and Aeluropus littoralis (Gouan) Parl.), Geraniaceae (Erodium sp.), Plantaginaceae (Plantago albicans L.), Plumbaginaceae (Limonium pruinosemum (L.) Chaz. and Limoniastrum sp.), Fabaceae (Retama retam Webb.), Terebinthaceae (Frankenia thymifolia Desf.) and Thymelaeaceae (Thymelaea microphylla Coss. & Dur.). There is a strong dominance of the Chenopodiaceae, represented by halophytic species. The second site, Birkraa is located 90 km from the town of M’Sila (35°21’16”N 4°38’40”E) (Fig. 2). This sampling site has a slope of 10%. Ants were sampled about 20 m near the dry lake. The vegetation grows in distinct bands along a toposequence, orienting from south to north with an overall 20% coverage. The most dominant species are the halophytes Atriplex halimus L. and Salsola vermiculata L. with five other species, Suaeda fructicosa (L.) Forrsk, Halocnemum strobilaceum (Pall.) M.B., Limonium pruinosemum (L.) Chaz., Juncus spp. and Frankenia thymifolia Desf. Some palm trees (Phoenix dactylifera L.) are interspersed at both sites. Many rodent holes were seen in the soil with the fat sand rat Psammomys obesus Cretzschmar dominating.

Sampling methods

To inventory the ants at the two sites, we employed two standard ant collecting techniques – pitfall trapping (Campos et al. 2011) and hand collecting (Romero & Jaffe 1989). All sampling occurred during March and April 2011, the spring season in the region. This followed other myrmecologists, such as Bernard (1945) and Athias-Henriot (1946), who preferred sampling ants in the Maghreb in spring (April and May). Likewise Cagniant (1973) mentioned that the most favourable period for sampling ants in Algeria ranges from late April to late July. Any myrmecological research outside of this period is useless, as was confirmed by Barech (2014) working on the ants of North Algeria and steppe.

At each site 20 pitfall traps were placed in transect within the halophilic plant communities 30 m from the Chott. The grid was set as two parallel transects with the pitfall traps spaced 10 m apart. Pitfall traps consisted of a metallic container (7.4 cm diameter × 10.5 cm long) two-thirds filled with soapy water and left open for 3–4 days. Hand collecting also was done during this time. As many microhabitats types as possibly favoured by ants were examined, such as among vegetation, under rocks, in fallen woody debris, palm trees, etc. All ants were placed in vials, preserved in 70% ethanol and labelled for type of collecting, trap number, and any ecological information. Voucher specimens of all ant species were identified by X.E. at the Universitat Autònoma de Barcelona (UAB) and are deposited in his collection.

Data analysis

To evaluate the species abundance and species diversity at each site and the differences in community composition, data of pitfall traps was analysed using PAST software (PAleontological STatistics) Version 2.17.

The indexes used to examine ant community composition and structure at the two sites at Chott El Hodna, were species richness (S), relative abundance (RA), occurrence frequency (O), dominance (D), Shannon’s diversity index (H), Simpson’s diversity index and evenness (E).

RESULTS

Myrmecofauna

A total of 928 ant individuals were collected (682 by pitfalls, 246 by hand) representing 24 species.
Fig. 1. Medbah sampling site.

Fig. 2. Birkraa sampling site.
from 14 genera and four subfamilies (Dolichoderinae, Dorylinae, Formicinae, Myrmicinae) (Fig. 3, Table 1). More species of ants were collected by pitfall trapping (20) than hand sampling (15). Taxa of two subfamilies dominated the ant fauna. Myrmicinae were the most frequently collected and included 14 species representing seven genera accounting for 58% of the total number collected. The other was the Formicinae, with eight species in five genera representing 33% of the total. Dolichoderinae and Dorylinae were each represented by a single taxon comprising 4% each of the total surveyed ants. The number of species collected, using pitfall traps, was almost identical at both sites: 14 at Medbah and 13 at Birkraa (Table 2). Seven species were found at both sites: *Tapinoma simrothi* Krausse, 1911; *Messor arenarius* (Fabricius, 1787); *Messor* sp. 1; *Monomorium* sp. 2; *Tetramorium biskrense* Forel, 1904; *Goniomma cf. barbaricum* Santschi, 1929, *Cataglyphis saviygni*

Table 1. Ant species collected at Chott El Hodna, Algeria from March–April 2011 by two sampling methods.

<table>
<thead>
<tr>
<th>Subfamily</th>
<th>Species</th>
<th>Pitfall</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolichoderinae</td>
<td>Tapinoma simrothi Krausse, 1911</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>Myrmicinae</td>
<td>Messor medioreuber Santschi, 1910</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Messor arenarius (Fabricius, 1787)</td>
<td>19</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Messor striatulus Emery, 1891</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Messor sp. 1</td>
<td>58</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Messor sp. 2</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>Monomorium salomonis (Linnaeus, 1758)</td>
<td>12</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Monomorium sp. 1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Monomorium sp. 2</td>
<td>346</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Cardiocondyla nigra Forel, 1905</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Tetramorium biskrense Forel, 1904</td>
<td>118</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Goniomma cf. thoracica Santschi, 1907(1)</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Goniomma cf. barbaricum Santschi, 1929(1)</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Pheidole pallidula (Nylander, 1848)</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Aphaenogaster sp.</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dorylinae</td>
<td>Dorylus fulvus (Westwood, 1840)</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Formicinae</td>
<td>Plagiolepis sp.</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Lepisiota frauentfeldi Mayr, 1855</td>
<td>19</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Cataglyphis bicolor (Fabricius, 1793)</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Cataglyphis saviygni (Dufour, 1862)</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Cataglyphis bombycinus (Roger, 1859)</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cataglyphis albicans (Roger, 1859)</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Bajcaridris sp.</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Camponotus atlantis Forel, 1890</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Total individuals</td>
<td></td>
<td>928</td>
<td>682</td>
</tr>
<tr>
<td>Total richness</td>
<td></td>
<td>24</td>
<td>246</td>
</tr>
</tbody>
</table>

(1) The names cf. *thoracica* and cf. *barbaricum* used here do not reflect a taxonomic decision. Both are unavailable names (Bolton 2012). Formal taxonomic decision is pending.
Dolichoderinae Tapinoma simrothi Krausse, 1911 11 2.32 4 1.93
Myrmicinae Messor medioruber Santschi, 1910 10 2.11 0 0
Messor arenarius (Fabricius, 1787) 18 3.79 1 0.48
Messor sp. 1 58 12.21 0 0
Monomorium salomonis (Linnaeus, 1758) 0 0 12 5.8
Monomorium sp. 1 0 0 1 0.48
Monomorium sp. 2 304 64 42 20.29
Cardiocondyla nigra Forel, 1905 0 0 2 0.97
Tetramorium biskrense Forel, 1904 5 1.05 113 54.59
Goniomma cf. thoracica Santschi, 1907 (1) 6 1.26 0 0
Goniomma cf. barbaricum Santschi, 1929 (1) 1 0.21 5 2.42
Pheidole pallidula (Nylander, 1848) 37 7.79 0 0
Aphaenogaster sp. 1 0 0 1 0.48
Formicinae Plagiolepis sp. 0 0 2 0.97
Lepisiotafrauenfeldi Mayr, 1855 0 0 19 9.18
Cataglyphis bicolore (Fabricius, 1793) 0 0 3 1.45
Cataglyphis savignyi (Dufour, 1862) 19 4 2 0.97
Cataglyphis bombycinus (Roger, 1859) 3 0.63 0 0
Bajcaridris sp. 1 0 0 1 0.48
Camponotus atlantis Forel, 1890 1 0.21 0 0

Total individuals 682 475 207
Total species richness 20 14 13

(1) The names cf. thoracica and cf. barbaricum used here do not reflect a taxonomic decision. Both are unavailable names (Bolton, 2012). Formal taxonomic decision is pending.

The species that were collected occurred in the highest abundance during March–April at Birkraa were T. biskrense, comprising 55 % of the total abundance and Monomorium sp. 2 comprising 19.81 %. At this site Monomorium sp. 2 occurred in 54 % of pit trap samples followed by T. biskrense with 46.15 %. Other species of ants were collected in low numbers (Fig. 4). At the second site, Medbah, Monomorium sp. 2 dominated (64 %) and was collected during each sampling event (Fig. 5). Cataglyphis savignyi occurred in almost 62 % of pit traps, but in low abundance (4 %). Messor arenarius also was collected in low abundance (4 %) but occurred in 54 % of the pit trap samples. All other species were trapped in low abundances (Fig. 5).

Species diversity
Dominance (D) at both sites is rather small (0.4 vs 0.35), respectively at Medbah and Birkraa given that this index varies from 0 to 1. The Simpson (1-D) Index illustrates medium values. For the Shannon index the values are generally small with 1.35 bits in Medbah and 1.47 bits in Birkraa which reflect a moderate diversity of ants at these two sites in Chott El Hodna. The evenness values at both sites are similar (0.51 in Medbah vs 0.57 in Birkraa) (Table 3).

DISCUSSION

Ant diversity and richness
This study is the first evaluation of the ants occurring near a unique North African habitat, a large saline lake, by using pitfall trap and hand sampling.

The 24 ant species were divided primarily into
Fig. 4. Relative abundance (RA %) and occurrence frequency (O %) of ant species in Birkraa. Total specimens, 207; number of pitfalls, 20.

Fig. 5. Relative abundance (RA %) and occurrence frequency (O %) of ant species in Medbah. Total specimens, 475; number of pitfalls, 20.
Myrmicinae (14 species) and Formicinae (eight species). Dolichoderinae and Dorylinae each were represented by one species. The most abundant species was *T. biskrense* in Birkraa, found in 50% of all traps. *Monomorium* sp. 2 was the most abundant taxon in the pitfall traps at Medbah. The desert ant *C. savignyi* was the most frequently trapped ant, being found in 62% of all pitfall traps, likely due to differences in catchability. The harvester ants, *M. arenarius* and *Messor* sp. 1, occurred in 54% of pitfall traps but they were less abundant at this site. However, the frequency of individual workers in pitfall traps may be related to the relative density of nearby nests (Schlick-Steiner et al. 2006) or wider foraging ranges (B. Taylor, pers. comm.). Our results of richness at Chott El Hodna (24 spp.) are similar to those found by Campbell et al. (2015) in a Namibian salt pan (23 spp.).

Diversity indices provide more information than simply the number of species present (i.e. they account for some species being rare and others being common), they serve as valuable tools that enable biologists to quantify diversity in a community and describe its numerical structure (Magurran 1988). The most commonly used indices are based on the estimation of relative abundance of species in samples (Heip et al. 1998).

The Simpson index and Shannon index values indicate a moderate diversity of ants at these two sites in Chott El Hodna and the distribution of individuals over species is equitable (see Table 3). Since D takes on values between zero and one, 1-D provides an intuitive proportional measure of diversity that is much less sensitive to species richness (Magurran 2004). Ant species collected at Chott El Hodna include taxa that are considered in the literature as rare or have a restricted geographical distribution such as: *G. cf. thoracica*, *G. cf. barbaricum* and *Cardiocondyla nigra*. The male and queen of the two *Goniomma* species are undescribed (Bolton 2012). *Cardiocondyla* and *Goniomma* are genera that are difficult to collect (Cagniant 2009); yet two species of *Cardiocondyla* are listed as cosmopolitan by Cagniant (2006) in his list of Moroccan ants. *Goniomma* known as the Mediterranean harvester ants (Wheeler 1907; Espadaler 1981) are rare in collections because of their nocturnal habits and narrow burrows making them difficult to find (Bernard 1968; Blatix et al. 2013). They inhabit open and flat hot areas and sandy zones (Blatix et al. 2013).

At the Birkraa site two individuals of *C. nigra*, were collected by pitfall traps. This is the second record of this species from Algeria. Seifert (2003) noted that the first record of *C. nigra* in Algeria was in 1934 at Biskra but gave no other information. The report, however, was by Forel (1909) where two workers (one in El Kantara and one in the dunes of Biskra) were named as *C. batesii* var. *nigra* Forel, 1905. Schembri & Collingwood (1981) elevated *C. nigra* to species status. Three species of *Cardiocondyla*, *C. batesii* Forel, 1894, *C. nuda* (Mayr, 1866) and *C. jacquemini* Bernard, 1953 are known from the Saharan region of Algeria (Délye 1968). *Cardiocondyla batesii* was rediscovered by Cagniant (1968) in western Algeria (Oranie).

In our study, we collected only two workers of the rare genus *Bajcaridris*, but unfortunately the species could not be ascertained because only two heads were recovered from the pitfall. Mandible dentition, with five teeth which do not evenly decrease in size from apex to base, allowed for the generic distinction from *Proformica*. Three species of this genus are known from Algeria, *B. kraussii* (Forel, 1895), *B. menozzii* (Santschi, 1923) and *B. theryi* (Santschi, 1936). All three species have rarely been collected since their description. These ants inhabit oueds or wadis of the northern Sahara in Algeria (Agosti 1994). Forel (1895) recorded and described only one individual of *B. kraussii* (worker) from Algerian Sahara (Oued En Nsa between Tougourt and Ouargla). Emery (1899) also described a male of this species from Ghardaia (southern Algeria). *B. kraussii* is a septentrional species populating the Berberian steppes and occurs in the Tunisian Chott (Délye 1968). The second species, *B. menozzii*, was found by Cagniant (1973) in a forest of Red Juniper.

Four species of *Cataglyphis* were collected at Chott El Hodna, *C. bicolor*, *C. albicans*, *C. savignyi*

<table>
<thead>
<tr>
<th>Table 3. Diversity indexes and Evenness for the two sites at Chott El Hodna, Algeria during March–April 2011.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Taxa (S)</td>
</tr>
<tr>
<td>Individuals</td>
</tr>
<tr>
<td>Dominance (D)</td>
</tr>
<tr>
<td>Simpson (1-D)</td>
</tr>
<tr>
<td>Shannon (H)</td>
</tr>
<tr>
<td>Evenness (E)</td>
</tr>
</tbody>
</table>
and C. bombycinus. C. bicolor apparently prefers clay soils and is found even in heavy, moist soils close to chotts (Wehner et al. 1994). This species has been reported to inhabit low-shrub desert surrounding the salt pans (Dillier & Wehner 2004). Their nests are often found within inundation areas that are flooded once every year, areas where no other Cataglyphis species occur (Wehner 1983). Colonies of C. savignyi were found by Cagniant (2009) in the salt lake of Oum Dbâ (north of Laâyoune) in Morocco and by Heatwole (1996) in the Chott El Djerid in Tunisia. Cataglyphis albicans is usually confined to dry, hard and steppe-like regions (Wehner 1983) while C. bombycinus is adapted to sandy habitats (Santschi 1929, Athias-Henriot 1946).

In this study, Messor spp. were the most species-rich genus represented by M. medioruber, M. striatulus, M. arenarius, Messor sp. 1 and Messor sp. 2. The harvester ant M. arenarius is a common North African ant (Délye 1971). It is a Saharan species (Délye 1968) inhabiting high plains (Hauts plateaux) and the northern borders of the Algerian Sahara (Cagniant 1968). This species was recorded in some arid areas of chotts in Algeria (Forel 1902).

The subfamily Dorylineae with the subterranean Dorylus fulvus was collected only at Birkraa, where a few individuals were collected by hand from under rocks beneath palm trees. Santschi (1931) describes Dorylus as a curious [meaning strange not inquisitive] genus, which is represented in North Africa by two species: D. (Alaopone) aethiopicus Emery, 1895; and D. (Typhlopone) fulvus. Santschi (1931) separated the form from Tunisia as Dorylus (Typhlopone) fulvus West. St. jewenculus (Shuck.) v. punicus Sants. (Taylor, pers. comm. believes the North Africa–eastern Mediterranean forms are readily separable from the type D. fulvus, which seems likely to be of sub-Saharan origin). Nothing is known of the habits of the first species but the latter is closely adapted to a hypogean life with a social organisation much like termites, with large queens. The nests are found in damp places under large rocks, also associated with animal manure (Santschi 1931). In a salty coastal plain near Maharès (Tunisia) during the five-year period, Dillier & Wehner (2004) observed several attacks by this species on C. bicolor colonies.

Messor sp. 1, Plagiolepis sp., Monomorium sp. 1, Monomorium sp. 2 and Aphaenogaster sp. require further identification to species. The Aphaenogaster sp. seems most probably an undescribed new species.

ACKNOWLEDGEMENTS

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this Research Group (No. RGP-1436-029). We are grateful to the two reviewers of this paper especially B. Taylor for helpful comments on the manuscript, and for checking the English. Special thanks to B. Kondratieff (Colorado State University) for giving substantial comments on the manuscript. G.B. and M.K. thank the University of M’sila for supporting scientific training in the Autonomous University of Barcelona.

REFERENCES

Accepted 8 September 2015