Sensing the energetic status of plants and ecosystems

Josep Peñuelas1,2, Mireia Bartrons1,2, Joan Llusia1,2, and Iolanda Filella1,2

1 CSIC, Global Ecology Unit CREA-CSIC-UAB, Cerdanyola del Vallès 08193, Catalonia, Spain
2 CREA, Cerdanyola del Vallès 08193, Catalonia, Spain

The emerging consistency of the relationship between biochemical, optical, and odorous signals emitted by plants and ecosystems offers promising prospects for continuous local and global monitoring of the energetic status of plants and ecosystems, and therefore of their processing of energy and matter.

NADPH/NADP as biochemical indicator of reducing power
Photosynthesis converts solar energy into chemical energy in the form of reducing power (NADPH), which is essential for primary metabolism. Plants often generate more reducing power than is needed for their primary metabolism, for example, under light saturation or stressful conditions. The NADPH/NADP ratio thus becomes an excellent biochemical indicator of this over-reduction of the photosynthetic electron-transport chain and thus of the cellular energetic status of plants (Figure 1). Indeed, this ratio has been used as a biochemical indicator of changes in the availability of reducing power linked to stressors such as drought [1], high light [2], salinity [3], nutrient deficiency [4], or pathogens [5].

Reflectance and fluorescence signals
The rate of electron transport is downregulated by various mechanisms to overcome the over-reduction of the photosynthetic electron-transport chain and to dissipate the excess energy signaled by high NADPH/NADP ratios. The dissipation of energy by nonphotochemical quenching through the xanthophyll cycle is one of these mechanisms. It is especially interesting because it can provide an indirect optical signal of excess reducing power, increased NADPH/NADP ratios, and reduced light-use efficiency (LUE) through the associated changes in reflectance at the blue side of the green region of the spectrum. Increases in the concentration of zeaxanthin translate into decreases in reflectance at 531 nm, while reflectance at 570 nm is insensitive to short-term changes in zeaxanthin. The photochemical reflectance index (PRI), defined as \(R_{531} - R_{730} / R_{531} + R_{730} \), where R indicates reflectance and the numbers indicate wavelength in nanometers [6,7], is thus used as a reflectance index for reducing power and LUE. The PRI also measures the relative reflectance on either side of the green reflectance hump (550 nm), that is, the reflectance in the blue side of the green region of the spectrum (chlorophyll and carotenoid absorption) relative to the reflectance in the red side (chlorophyll absorption only). The PRI consequently also behaves as an index of the chlorophyll/carotenoid ratios and therefore of the energetic status and photosynthetic activities associated with changes in chlorophyll/carotenoid ratios throughout foliar development, aging or stress [8]. The PRI estimation of LUE and photosynthetic performance has been studied extensively at the leaf and canopy levels and is now also increasingly used at the ecosystem level [9].

In addition to changes in reflectance, such as those monitored with the PRI, the shifts in energetic status translate into changes in fluorescence and temperature that may thus become relevant optical signals of different stresses (Figure 1). Two major fluorophore groups that dominate plant fluorescence emissions can potentially be sensed remotely. The first group of compounds, which includes NADPH itself, emits photons in the blue and green spectral regions under natural or artificial UV excitation, but it is chlorophyll a the fluorophore that contributes most to plant fluorescence. Chlorophyll a emits fluorescence in two broad bands with peaks at 684–695 and 730–740 nm. Various ratios of fluorescence intensity, combining the emissions at blue (F440), green (F520), red (F690), and far-red (F740) wavelengths, have been proposed for probing the status of vegetation vitality and stress responses, but the relationship between fluorescence and photochemistry is complex [10].

Further research is clearly warranted to understand better the temporal and spatial dynamics of these reflectance and fluorescence signals and their relationships with the energetic status, reducing power, and LUE of plants and to resolve the problems that may still preclude the generalization of their use at ecosystemic and biospheric scales. In brief, these problems are related to the structural differences of canopies, to varying ‘background effects’ (e.g., soil color, moisture, shadows, or the presence of other non-green landscape components), to the effects of seasonality or to the signals derived from variations in illumination and viewing angles [10,11]. The emerging consistency of the relationships among the PRI, sun-induced fluorescence (SIF), LUE, and ecosystemic CO₂ uptake [9,12], however, suggests a surprising degree of ‘functional convergence’ of biochemical, physiological, and structural components affecting ecosystemic carbon fluxes. In other words, ecosystems possess emergent properties that may allow us to effectively explore their seemingly complex photosynthetic–energetic behavior, using surprisingly simple optical sampling methods based on energetic status, such as the
measurement of the PRI or SIF. The enormous potential benefits are worth exploring.

Odorous signals

Plants and ecosystems emit not only optical signals (reflectance and fluorescence) of their physiological status associated with the imbalance between supply and demand of reducing power, but also ‘scents’ of such status. The excess reducing power and higher NADPH/NADP ratios generated when the NADPH sink in carboxylation decreases also increases the synthesis of highly reduced secondary metabolites, including volatile metabolites such as isoprenoids that are then emitted in significant amounts (Figure 1) [13,14]. The synthesis and emission of isoprenoids would be highest when the demand of carbon assimilation for reducing power is lowest [13,14]. In fact, isoprene and monoterpane emissions increase when LUE decreases [15], which has driven the use of the PRI signal for estimating not only carbon fixation, but also isoprenoid emissions themselves [15]. Isoprenoids are emitted at the nanomolar scale, but electron flux involved in the NADPH/NADP ratio is at the micromolar scale, so the emission is not a matter of mass balance of competing processes but of an enhancement under higher flow.

Monitoring of the energetic status

We thus propose that the energetic status of plants (and ecosystems) resulting from the balance between the supply and demand of reducing power can be assessed biochemically by the cellular NADPH/NADP ratio, optically by using reflectance and fluorescence as indicators of the dissipation of excess energy, and odorously by the emission of volatile organic compounds such as isoprenoids, as indicators of an excess of reducing equivalents (Figure 1). These signals can provide information on the energetic status, associated health status, and the functioning of plants and ecosystems. The integration of these three ways of assessing the excess of reducing power in different species and ecosystems with different ecophysiological traits will provide further knowledge of the links among the three signals and the strategies of the different species to deal with excess of energy. These signals and their integration are thus of academic interest, but may also have multiple applications for environmental and agricultural monitoring, for example, by extending the spatial coverage of carbon-flux observations to most places and times, and/or for improving the process-based modeling of carbon fixation and isoprenoid emissions from terrestrial vegetation on ecosystemic and global scales. Significant benefits can thus be expected if we are able to solve the considerable challenges that remain for a wide-scale and routine implementation of these biochemical, optical, and odorous signals for ecosystemic and/or agronomic monitoring; a key issue in global ecology, agricultural applications, the global carbon cycle and earth science.

Figure 1. Overview of the biochemical, optical, and odorous signals in response to changes in the reducing power of plants. The energetic status of plants (and ecosystems) resulting from the balance between the supply and demand of reducing power can be assessed by the resulting biochemical changes in the cellular NADPH/NADP ratio, optical changes in the foliar reflectance and fluorescence, and changes in production and emission of odorous volatile organic compounds such as isoprenoids.
Acknowledgments
The authors would like to thank the European Research Council Synergy grant ERC-SyG-2013-610028, IMBALANCE-P, the Spanish Government grant CGL2013-48074-P, the Catalan Government grant SGR 2014-274, and the Air Liquide Foundation AirLiCOVs grant.

References
3. Lokhande, V. et al. (2011) Regulated alterations in redox and energetic status are the key mediators of salinity tolerance in the halophyte Sesuvium portulacastrum (L.) L. Plant Growth Regul. 65, 287–298